Top and Electroweak Physics at the Tevatron

Graham W. Wilson University of Kansas for the CDF and DØ Collaborations April APS 2008, St. Louis, MO. April 12th 2008

Outline

- Introduction
- Top Physics
 - Overview
 - Cross-section
 - Top Mass
- Electroweak Physics
 - W's and Z's at hadron colliders
 - W Mass
 - Di-Bosons
- Higgs Constraints
- Summary

(see B. Winer talk for direct Higgs search)

(see E. Brubaker talk for single-top)

$m_t and m_W \rightarrow m_{Higgs}$

Heavy particles talk to each other through virtual particle loops

+ similar diagrams for Z, t

Well-defined predictions for the inter-relationships in both the Standard Model and BSM

Direct determination of m_t, m_w

LEP/SLD/Tevatron measurements consistent with blue ellipses

Direct measurements of m_t and m_W improve considerably over indirect measurements and favor light Higgs

Further improvement in m_t and especially m_W is important for testing m_H

Tevatron Luminosity

Analyzed RunII data-set: up to 2.8 fb⁻¹

On track to collect 8 fb⁻¹ through 2010

Detectors

D \varnothing : calorimetry and μ coverage

- 2T Solenoid
- tracker to R = 52 cm
- RunIIb: Layer 0 Silicon. Upgrades to trigger
- CDF: general purpose
- 1.4T Solenoid
- High precision tracker (R = 1.4m) Both detectors have Si VTX detectors optimized for b-tagging
 Tevatron: 1.7 MHz BX frequency
 <n_{int}> on average ≈ 3 (store start ≈ 10)

Hadron Collider Physics

Physics program depends on being able to reconstruct jets reliably and requiring leptons to reduce QCD bkgds (σ .B < σ). Control lepton-id and trigger efficiencies using Z \rightarrow 11 samples.

All measured cross-sections have 6% normalization uncertainty

Top Over-view

Rich and unique system

Top Pair Production & Decay

 $|V_{tb}| = 0.9991$ in 3 gen unitary CKM matrix. So expect BR(t \rightarrow W b) \approx 1. Decay channels are defined by known W BRs.

Top Cross-Section

Measurements in many channels with different techniques by both experiments

Top Cross-Section

$$t\overline{t} \rightarrow \overline{b}\ell^-\overline{\nu}_\ell b\ell'^+\nu'_\ell$$

New di-lepton measurement with secondary vertex tag:

 $\sigma_{tt} = 9.0 \pm 1.1 (stat.) \pm 0.7 (syst.) \pm 0.5 (lumi.) \text{ pb}$

Top Cross-Section

Combined result (m_t =175 GeV):

 $7.42 \pm 0.53 \pm 0.46 \pm 0.45$ pb stat. syst. lumi

Top Mass

Critical to understand the jet energy scale (JES)

Years of careful work by CDF and $D \varnothing$

Many measurements in progress.

Different channels, different techniques, different experiments.

Much attention to understanding statistical and systematic correlations amongst analyses so that they can be combined

Have selected the 3 most precise analyses which currently enter the Tevatron top mass combination. All are 2 fb⁻¹ RunII measurements DØ l+jets, CDF l+jets CDF di-lepton

Lepton+jets

Matrix element method first applied in Nature 429 (2004) 638

PRD74 (2006) 092005 for more details

$$P_{sig}(x; m_{top}, JES) = \frac{1}{\sigma_{obs}(p\overline{p} \to t\overline{t}; m_{top}, JES)} \times \sum_{perm} w_i \int_{q_1, q_2, y} \sum_{\text{flavors}} dq_1 dq_2 f(q_1) f(q_2) \frac{(2\pi)^4 \left| \mathcal{M}(q\overline{q} \to t\overline{t} \to y) \right|^2}{2q_1 q_2 s} d\Phi_6 W(x, y; JES)$$

Lepton+jets

Modified matrix element method

$$L = \frac{1}{N(m_t)} \frac{1}{A(m_t, \text{JES})} \sum_{i=1}^{24} w_i \int \frac{f(z_1)f(z_2)}{FF} \, \text{TF}(\vec{y} \cdot \text{JES} \mid \vec{x}) \, |M_{\text{eff}}(m_t, \vec{x})|^2 \, d\Phi(\vec{x})$$

Integrate over the expected distributions in m_t^2 , m_W^2 adjusting for simplifying assumptions which alter original BW form.

 $m_t = 172.7 \pm 1.2(stat) \pm 1.3 (JES) \pm 1.2 (syst) GeV$

(very recently updated CDF result will be shown in parallel session)

Di-leptons

$$t\overline{t} \rightarrow \overline{b}\ell^-\overline{\nu}_\ell b\ell'^+\nu'_\ell$$

$$P(\mathbf{x}|M_t) = \frac{1}{N} \int d\Phi_8 |\mathcal{M}_{t\overline{t}}(p;M_t)|^2 \prod_{jets} W(p,j) f_{PDF}(q_1) f_{PDF}(q_2)$$

- Event selection with evolutionary neural network with 6 input variables optimized for mass resolution.
- Use t tbar production matrix element, jet-parton transfer functions and PDFs.
- Maximize posterior probability density
- Main systematic: Jet Energy Scale (2.5 GeV)

 $m_t = 171.2 \pm 2.7 \pm 2.9 \text{ GeV}$

Top Mass Uncertainties

Run II Measurement	CDF di-l	D0 di-l	CDF I+j	D0 I+j	CDF all-j	CDF Ixy	world average
∫Ldt (fb⁻¹)	2.0	1.1	1.9	2.1	1.9	0.7	
Result	171.2	173.7	172.7	172.2	177.0	180.7	172.6
Jet Energy Scale	2.5	3.1	1.5	1.3	2.0	0.3	0.9
Signal	0.7	0.8	0.6	0.7	0.6	1.4	0.5
Background	0.4	0.6	0.6	0.4	1.0	7.2	0.4
Fit	0.6	0.9	0.2	0.1	0.6	4.2	0.1
MC	0.7	0.2	0.4	0.0	0.3	0.7	0.2
Systematic	2.8	3.4	1.7	1.6	2.4	8.5	1.1
Statistical	2.7	5.4	1.2	1.1	3.3	14.5	0.8
Total Uncertainty	3.9	6.4	2.1	1.9	4.1	16.8	1.4

Note: Dominant JES uncertainties scale with statistics in l+j, all-j channels

Top Mass Summary

W, Z Cross-Sections

W, Z samples used extensively to understand detector and trigger efficiencies and investigate parton distribution functions and soft-gluon effects.

stat. syst. lumi.

$$\sigma_Z$$
. B = 254.9 ± 3.3 ± 4.6 ± 15.2 pb
R = 10.84 ± 0.15 ± 0.14

W mass measurement

00000

0000

Challenging measurement. May not get any easier at LHC.

Goal around 0.3‰ precision.

Use leptonic decays.

Longitudinal momentum fractions of initial partons not known event-by-event. => Work in transverse plane.

3 observables sensitive to m_W : $p_T(lepton), p_T(neutrino), m_T$ where $m_T = \sqrt{2p_T^{\ l} \not p_T (1 - \cos \Delta \phi)}$

Need superb control of momentum and energy scales, and cross-checks on production, decay and recoil models

W mass measurement

Calibrate p-scale of tracker with J/ψ and upsilon ($\Delta M_W = 17$ MeV)

Transfer to calorimeter using E/p for electrons

Check scale and recoil modelling with Z samples

W mass measurement

CDF 0.2 fb⁻¹

m_T Fit Uncertainties			
Source	$W \to \mu \nu$	$W \to e \nu$	$\operatorname{Correlation}$
Tracker Momentum Scale	17	17	100%
Calorimeter Energy Scale	0	25	0%
Lepton Resolution	3	9	0%
Lepton Efficiency	1	3	0%
Lepton Tower Removal	5	8	100%
Recoil Scale	9	9	100%
Recoil Resolution	7	7	100%
Backgrounds	9	8	0%
PDFs	11	11	100%
W Boson p_T	3	3	100%
Photon Radiation	12	11	100%
Statistical	54	48	0%
Total	60	62	-

Many systematics scale with statistics

W Mass Result

$0.2 \text{ fb}^{-1} \text{ only}$

Distribution	$m_W \; (\text{GeV})$	$\chi^2/{\rm dof}$
$m_T(e,\nu)$	$80.493 \pm 0.048 \pm 0.039$	86/48
$p_T(e)$	$80.451 \pm 0.058 \pm 0.045$	63/62
p_T (e)	$80.473 \pm 0.057 \pm 0.054$	63/62
$m_T(\mu, \nu)$	$80.349 \pm 0.054 \pm 0.027$	59/48
$p_T(\mu)$	$80.321 \pm 0.066 \pm 0.040$	72/62
$\not\!$	$80.396 \pm 0.066 \pm 0.046$	44/62

CDF RunII Combined: $80.413 \pm 0.034 \pm 0.034$ GeV

CDF and D \varnothing results on 1-2 fb⁻¹ data-sets in progress

W Mass Summary

CDF Run II Result is world's most precise single measurement

W Charge Asymmetry

PDF constraint unique to p pbar !

Measures tendency for u valence quarks to carry more fractional momentum than d valence quarks.

u dbar \rightarrow W⁺ follows p direction

ubar $d \rightarrow W^{-}$ follows pbar

Defining $\eta = -\ln[\tan(\theta/2)]$

$$A(\eta) = \frac{N_{\mu^{+}}(\eta) - k(\eta)N_{\mu^{-}}(\eta)}{N_{\mu^{+}}(\eta) + k(\eta)N_{\mu^{-}}(\eta)}$$

Statistics limited measurements with experimental uncertainties smaller than CTEQ uncertainty sets

Z p_T and rapidity distributions

Soft gluons lead to sizeable transverse momentum of W, Z.

Non-perturbative effect. Need good phenomenological description of several QCD issues to do precision physics.

Use boson rapidity distribution to explore PDFs

Gluon resummation calculation (RESBOS) works well for $p_T < 30$ GeV

NNLO calculations needed to describe shape for $p_T > 30$ GeV

Di-Bosons

Measurement of WZ and ZZ at the Tevatron =>confidence in capability to find signals in channels like WH, ZH and tri-leptons WZ production now established. ZZ is on the cutting edge. σ_{ZZ} (SM) = 1.5 pb Including leptonic branching ratios, Eg. BR(ZZ \rightarrow 41) = 0.5% $\Rightarrow \sigma B = 7 fb$

DQ

CDF 41: 3 events (0.1 bkgd)

	Candidates without a	Candidates with a
Category	trackless electron	trackless electron
ZZ	$1.990\pm0.013\pm0.210$	$0.278 \pm 0.005 \pm 0.029$
Z+jets	$0.014^{+0.010}_{-0.007}\pm0.003$	$0.082^{+0.089}_{-0.060}\pm0.016$
Total	$2.004^{+0.016}_{-0.015}\pm0.210$	$0.360^{+0.089}_{-0.060}\pm0.033$
Observed	2	1

$+4.2 \sigma$ significance

 $4l + llvv \rightarrow +4.4 \sigma \text{ significance}$ CDF: $\sigma_{ZZ} = 1.4 + 0.7 - 0.6 \text{ pb}$

ee, $\mu\mu$: +2.4 σ (+1.8 σ expected)

$$\sigma^{ZZ} = 2.1 \pm 1.1(stat.) \pm 0.4(sys.) \text{ pb}$$

Both consistent with SM expectation (1.5 pb)

More Electroweak Results

- Radiation Amplitude Zero in W γ
- ZZy, Zyy neutral TGCs
- Z invisible width
- WZ
- Z rapidity

See parallel sessions E11, R12

Global Electroweak Fit

Fit to many precision observables.

Main new recent input data is Tevatron m_t, m_W .

Consistent with SM ($\chi^2/dof = 17.2/13$)

 $m_{H} = 87 + 36 - 27 \text{ GeV}$ $m_{H} < 160 \text{ GeV} @ 95\% \text{ CL}$ (< 190 GeV including LEP2 Higgs limit)

Electroweak precision measurements and Higgs tests

Understanding how the upcoming Higgs results at Tevatron/LHC fit into our SM or MSSM? world will benefit greatly from precision m_t , m_W measurements

Outlook

Tevatron with understood detectors and much larger data-sets is setting a bar for precision EW measurements.

Will continue to be highly competitive and relevant in the LHC era...

Let's make the most of the current opportunities...

Summary

- Tevatron RunII is in scientific prime-time ($\sqrt{s=1.96}$ TeV)
 - More details, updates and other results see:
 - <u>http://www-cdf.fnal.gov/physics/physics.html</u>
 - http://www-d0.fnal.gov/results/index.html
- Top sector is under heavy scrutiny
- High precision measurements of the top mass and W mass
- Evidence for ZZ production
- Strong indirect constraints on the Higgs
- Many parallel session talks with Tevatron results:
 - Top (J12, M12, X11)
 - Electroweak (E11, R12)

Backup Slides

W width

$\Gamma_{\rm w} = 2032 \pm 45 \pm 57 \,\,{\rm MeV}$

Higgs Sensitivity Backup Slide

Pointer to parallel session talks

- Electroweak Sessions R12, E11
- Top Sessions J12, M12, X11

W Charge Asymmetry

PDF constraint unique to p pbar !

Measures tendency for u valence quarks to carry more fractional momentum than d valence quarks.

u dbar \rightarrow W⁺ follows p direction

ubar $d \rightarrow W^{-}$ follows pbar

Defining $\eta = -\ln[\tan(\theta/2)]$

$$A(\eta) = \frac{N_{\mu^{+}}(\eta) - k(\eta)N_{\mu^{-}}(\eta)}{N_{\mu^{+}}(\eta) + k(\eta)N_{\mu^{-}}(\eta)}$$

Statistics limited measurement with experimental uncertainties smaller than CTEQ uncertainty sets

Include a slide on WZ ?

Top Pair Production & Decay

 $|V_{tb}| = 0.9991$ in 3 gen unitary CKM matrix.

So expect $t \rightarrow W$ b, with channels defined by known W BRs

tt decay modes

CDF 1111: 3 events (0.1 bkgd)

	Candidates without a	Candidates with a
Category	trackless electron	trackless electron
ZZ	$1.990\pm0.013\pm0.210$	$0.278 \pm 0.005 \pm 0.029$
Z+jets	$0.014^{+0.010}_{-0.007}\pm0.003$	$0.082^{+0.089}_{-0.060}\pm 0.016$
Total	$2.004^{+0.016}_{-0.015}\pm0.210$	$0.360^{+0.089}_{-0.060}\pm0.033$
Observed	2	1

$$\sigma_{PDF \pm} = \frac{1}{1.6} \left(\sum_{i=1}^{n} \left[\Delta M_{W} \left(S_{i}^{\pm} \right) \right]^{2} \right)^{\frac{1}{2}}$$

Conversion to 1σ

chi2/dof = 17.2/13

New top decay modes ?

• BR(t \rightarrow Z q) < 3.7% @ 95% CL (CDF Prel.)

• $R = BR(t \rightarrow W b) / BR(t \rightarrow Wq)$

 $R = 0.97 \pm 0.09$ > 0.79 @ 95% CL

• BR($t \rightarrow H^+ b$)

Top Properties

- Width
- Lifetime
- Charge
- Production (gg fraction): 0.07±0.14 ±0.07
- Charge asymmetry
- W helicity

Discriminate $gg \rightarrow t\bar{t}$ and $q\bar{q} \rightarrow t\bar{t}$ using higher probability for gluons to radiate lowmomentum gluon. Calibrate low p_T track rate of gluon induced processes with W+n-jet and di-jet events

Top Pair Production & Decay

 $|V_{tb}| = 0.9991$ in 3 gen unitary CKM matrix. So expect BR(t \rightarrow W b) \approx 1. Decay channels are defined by known W BRs.

Which top mass measurements?

Many measurements in progress.

Different channels, different techniques, different experiments.

Much attention to understanding statistical and systematic correlations amongst analyses so that they can be combined

DØ 1+jets CDF 1+jets CDF di-lepton

Have selected the 3 most precise analyses which currently enter the Tevatron top mass combination. All are 2 fb⁻¹ RunII measurements

Top Mass

Z rapidity

Z p_T Distribution

Soft gluons lead to sizeable transverse momentum of W, Z.

Non-perturbative effect. Need good phenomenological description of several QCD issues to do precision physics

Gluon resummation calculation (RESBOS) works well for $p_T < 30$ GeV

NNLO calculations needed to describe shape for $p_T > 30$ GeV