Di-Boson Measurements at the Tevatron

Graham W. Wilson University of Kansas for the CDF and DØ Collaborations HCP Toronto, August 24th 2010

Physics Motivation

- Di-boson final states: Charged: WW, WZ, W γ Neutral : ZZ, Z γ , ($\gamma\gamma$) Similar to WH, ZH, gg \rightarrow H \rightarrow WW.
- Test the electroweak sector:
 - cross-sections, kinematic distributions, gauge-boson couplings
- Search for new particles decaying to the same final state
- Known benchmarks for Higgs search
 - demonstrate sensitivity and constrain backgrounds

 γ or Z

W

W

W

W

Ζ

Di-Boson Cross-Sections

So far, the primary measurement channel is through leptonic decays. This means that we are probing σ -B values orders of magnitude smaller. Example: σ •B \approx 1.5 fb for $ZZ \rightarrow \mu\mu\mu\mu$.

In practice, we measure final state topologies like: lepton+photon+MET (W γ), di-lepton + photon (Z γ), photon+MET (Z γ), di-leptons + MET (WW), tri-leptons+MET (WZ), lepton+jets+MET (WW+WZ), jets+MET (WW+WZ+ZZ), four-leptons (ZZ). We often retain acceptance for new physics sources of the same final state topology: eg. Higgs, SUSY, technicolor.

Outline

- Introduction
- $Z\gamma$ + anomalous neutral gauge couplings
- Wγ
- WW
- WZ
- ZZ
- Jets + MET (WW+WZ+ZZ)
- lvjj (WW+WZ)
- Combining charged gauge boson coupling measurements
- Summary

Charged Triple Gauge Couplings

One of the potentially most sensitive tests of the SM is the self-interactions of the gauge bosons

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = i g_1^V (W^{\dagger}_{\mu\nu} W^{\mu} V^{\nu} - W^{\dagger}_{\mu} V_{\nu} W^{\mu\nu}) + i \kappa_V W^{\dagger}_{\mu} W_{\nu} V^{\mu\nu} + \frac{i \lambda_V}{M_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\ \nu} V^{\nu\lambda}$$

$$q$$

 \overline{q}
 V_0
 V_2

5

• Analyses usually use this C,P, and CP conserving form of an effective Lagrangian for the WW γ and WWZ vertices with up to 5 free parameters. ($g_1^{\gamma} = 1$)

• In the SM,
$$g_1^V = \kappa_V = 1$$
 and $\lambda_V = 0$ for $V = \gamma, Z$
• Analyses often use reduced parameter sets

based on additional constraints.

(as used at LEP2) 3-parameter 2-parameter

SU(2)×U(1):
$$\Delta \kappa_z = \Delta g_1^z - \Delta \kappa_v \tan^2 \theta_w, \lambda_v = \lambda_z$$

vWW = ZWW: $\Delta \kappa_v = \Delta \kappa_z, \lambda_v = \lambda_z$

$$V_0$$
 V_1
 V_2

 W
 W
 γ
 γ or Z
 W
 W

 W
 W
 Z

$$\alpha(\hat{s}) = \frac{\alpha_0}{\left(1 + \hat{s}/\Lambda_{NP}^2\right)^n}$$

Complementarity to LEP2

Experiments at LEP2 primarily tested a combination of WW γ and WWZ TGCs in ee \rightarrow WW by full reconstruction of the event kinematics and cross-section measurements at $\sqrt{s} \le 209$ GeV.

Many of the collisions producing dibosons extend significantly above the \sqrt{s} explored at LEP2.

The Tevatron provides clean signatures in the leptonic decay modes to test **directly** WW γ couplings in the W γ final state and to test **directly** WWZ couplings in the WZ final state (in addition to channels like WW).

Zγ + Anomalous Neutral TGCs

$$\mathcal{L}_{Z\gamma V} = -ie \left[\left(h_1^V F^{\mu\nu} + h_3^V \widetilde{F}^{\mu\nu} \right) Z_\mu \frac{\left(\Box + m_V^2\right)}{m_Z^2} V_\nu + \left(h_2^V F^{\mu\nu} + h_4^V \widetilde{F}^{\mu\nu} \right) Z^\alpha \frac{\left(\Box + m_V^2\right)}{m_Z^4} \partial_\alpha \partial_\mu V_\nu \right]$$

For Z γ , explore using ee γ , $\mu\mu\gamma$ and $\nu\nu\gamma$ final states. Lots of ISR and FSR (1⁺1⁻ γ) to deal with.

- More details see T. Phillips' talk at ICHEP and Y. Maravin's talk at Blois.
- SM has no ZZZ, ZZγ or Zγγ couplings.
- h_3 , h_4 couplings conserve CP

D0 $W\gamma \rightarrow l\nu\gamma$

	$e\nu\gamma$ channel	$\mu\nu\gamma$ channel
Luminosity	$720 \pm 44 \text{ pb}^{-1}$	$660 \pm 40 { m ~pb^{-1}}$
Acceptance \times efficiency	0.063 ± 0.003	0.045 ± 0.003
W + jet background	$34\pm3.8\pm3.1$	$18\pm2.9\pm1.9$
$\ell e X$ background	$17\pm2.7\pm1.3$	$2.7\pm1.3\pm0.2$
$W \to \tau$ background	$1.1\pm0.1\pm0.1$	$1.4\pm0.2\pm0.1$
$Z\gamma$ background		$3.8 \pm 0.53 \pm 0.42$
Candidate events	180	83
Measured signal	$130\pm14\pm3.4$	$57\pm8.8\pm1.8$
SM prediction	120 ± 12	77 ± 9.4

Interference leads to radiation amplitude zero in the photon angular distribution Studied by D0: PRL **100**, 241805 (2008)

Direct test of WWy couplings alone

$D0 \qquad WW (|v|v)$

PRL 103:191801 (2009)

 $\label{eq:pt} \begin{array}{l} p_T > 25 \ GeV, \, p_T > 15 \ GeV \\ MET > 20 \ (e\mu), \, 35 \ (\mu\mu), \, 45 \ (ee) \ GeV \end{array}$

Process	ee	$e\mu$	$\mu\mu$
$Z/\gamma^* \to ee/\mu\mu$	0.27 ± 0.20	2.52 ± 0.56	0.76 ± 0.36
$Z/\gamma^* \to \tau \tau$	0.26 ± 0.05	3.67 ± 0.46	
$tar{t}$	1.10 ± 0.10	3.79 ± 0.17	0.22 ± 0.04
WZ	1.42 ± 0.14	1.29 ± 0.14	0.97 ± 0.11
ZZ	1.70 ± 0.04	0.09 ± 0.01	0.84 ± 0.03
$W\gamma$	0.23 ± 0.16	5.21 ± 2.97	
W + jet	6.09 ± 1.72	7.50 ± 1.83	0.12 ± 0.24
Multijet	0.01 ± 0.01	0.14 ± 0.13	
$WW \to \ell \ell'$	10.98 ± 0.59	39.25 ± 0.81	7.18 ± 0.34
$WW \to \ell \tau / \tau \tau \to \ell \ell'$	1.40 ± 0.20	5.18 ± 0.29	0.71 ± 0.10
Total expected	23.46 ± 1.90	68.64 ± 3.88	10.79 ± 0.58
Data	22	64	14

 $\sigma(p\bar{p} \to WW) =$

 $11.5 \pm 2.1 \text{ (stat + syst)} \pm 0.7 \text{ (lumi) pb}$

Future measurements will likely take advantage of considerable progress on improving the sensitivity for these channels in the context of the Higgs search

CDF

WW (lvlv)

PRL 104.20180 (2010)

Process	Events
Z/γ^* (Drell-Yan)	79.8 ± 18.4
WZ	13.8 ± 1.9
$W\gamma$	91.7 ± 24.8
W + 1-jet	112.7 ± 31.2
ZZ	20.7 ± 2.8
$tar{t}$	1.3 ± 0.2
Total Background	320.0 ± 46.8
W^+W^-	317.6 ± 43.8
Total Expected	637.6 ± 73.0
Data	654

Events / 20 GeV c¹ SM W⁺W⁻ ----- λ₇ = 0.16 ∆g^z₁ = 0.34 Background 10 E ----- Δκ_γ = 0.72 Data E 10⁻¹ 10-2 0 50 250 300 350 400 450 500 100 150 200 Lepton p₁ [GeV c⁻¹]

3.6 fb⁻¹

95% CL limits

	Λ (TeV)	λ_Z	Δg_1^Z	$\Delta \kappa_{\gamma}$
Expected	1.5	(-0.05, 0.07)	(-0.09, 0.17)	(-0.23, 0.31)
Observed	1.5	(-0.16, 0.16)	(-0.24, 0.34)	(-0.63, 0.72)
Expected	2.0	(-0.05, 0.06)	(-0.08, 0.15)	(-0.20, 0.27)
Observed	2.0	(-0.14, 0.15)	(-0.22,0.30)	(-0.57,0.65)

Note: observed > expected

 $\sigma(p\bar{p} \to W^+W^- + X) = 12.1 \pm 0.9 \text{ (stat)} ^{+1.6}_{-1.4} \text{ (syst) pb}$

10

WW Cross-section Summary

NLO prediction: 11.7 ± 0.8 pb

(+ Higgs(165) : + 0.4 pb)

Current and future measurements are taking advantage of ongoing H→WW experimental developments.

CDF WZ→IvII Cross-Section I

• CDF has two recent measurements of WZ crosssection.

 12-variable NN plus ML fit to WZ Likelihood Ratio formed from ME for WW,ZZ, W+jet, Wγ using control regions to constrain background normalizations

$$\sigma(p\bar{p} \to WZ) = 3.7 \pm 0.6(\text{stat})^{+0.6}_{-0.4}(\text{syst})(\text{pb})$$

CDF Run II					$\int \mathcal{L} =$	$= 5.9 \text{ fb}^{-1}$
	WZ	signal	Low $\not\!\!\!E_1$	Control	No-Z	Control
ZZ	4.97	± 0.66	$6.97 \pm$	0.92	1.70	\pm 0.23
Z+Jets	2.41	$\pm \ 0.59$	$41.4 \pm$	10.1	14.2	\pm 3.49
$Z\gamma$	0.77	$\pm \ 0.27$	71.4 \pm	25.0	80.3	± 28.2
$t\overline{t}$	0.15	$\pm \ 0.04$	$0.02 \pm$	0.005	0.32	\pm 0.10
Total Background	8.29	± 0.97	119.7 \pm	27.2	96.6	± 28.5
WZ	40.2	± 4.06	$6.25 \pm$	0.63	3.52	\pm 0.36
Sig.+Back.	48.5	± 4.20	126.0 \pm	27.4	100.1	± 28.6
Data		53	1	.18		104

CDF WZ→IvII Cross-Section II

- CDF's second measurement normalizes to the NNLO Z cross-section reducing some systematics.
- Demonstrate reasonable detector stability with time wrt lumi, acceptance, lepton ID and trigger

Input	$WZ(Z \rightarrow ee)$	$\mathrm{WZ}(\mathrm{Z}{ ightarrow}\mu\mu)$
N(signal)	28	22
Background	6.4 ± 1.2	4.8 ± 1.1
Acceptance	$(0.997 \pm 0.036 \text{ (MC stat)}) \times 10^{-3}$	$(0.981 \pm 0.036 \text{ (MC stat)}) \times 10^{-3}$
Scale Factors(ID+trig+reco)	0.84 ± 0.05	0.77 ± 0.05
$L_{int}/{\rm fb}$	6.04 ± 0.36	5.86 ± 0.35

	$WZ(Z \rightarrow ee)$	$WZ(Z \rightarrow \mu \mu)$
ZZ	2.4 ± 0.2	2.3 ± 0.2
$\mathrm{Z}\gamma$	1.6 ± 0.6	0.7 ± 0.3
Z+jets	2.4 ± 1	1.8 ± 1
Total	6.4 ± 1.2	4.8 ± 1.1

$$\sigma(p\bar{p} \rightarrow WZ) = (4.1 \pm 0.6(stat) \pm 0.4(syst)) \text{pb}$$

$\mathsf{D0} \mathsf{WZ} \to \mathsf{IvII}$

arXiv:1006:0761

 Select 3 leptons (l=e,µ) each with pT > 15 GeV. Require MET > 20 GeV.

• 34 candidates

Source	eee	$ee\mu$	$e\mu\mu$	$\mu\mu\mu$
ZZ	0.39 ± 0.07	1.48 ± 0.20	0.40 ± 0.07	1.26 ± 0.23
V+jets	0.63 ± 0.17	0.56 ± 0.24	0.03 ± 0.01	0.17 ± 0.05
$Z\gamma$	0.28 ± 0.08	< 0.001	0.66 ± 0.34	< 0.001
$tar{t}$	0.03 ± 0.01	0.05 ± 0.01	0.04 ± 0.01	0.03 ± 0.01
Total bkg.	1.33 ± 0.21	2.11 ± 0.31	1.13 ± 0.35	1.46 ± 0.24
WZ signal	5.9 ± 0.8	6.9 ± 0.8	4.7 ± 0.6	5.8 ± 0.8
Observed	9	11	9	5

 $\sigma(WZ) = 3.90^{+1.01}_{-0.85} \text{ (stat + syst) } \pm 0.31 \text{ (lumi) pb}$ NLO: $3.25 \pm 0.19 \text{ pb}$

WZ Candidate Event

$D0 WZ \rightarrow |v||$

Coupling relation	95% C.L. Limit
$\Delta g_1^Z = \Delta \kappa_Z = 0$	$-0.075 < \lambda_Z < 0.093$
$\lambda_Z = \Delta \kappa_Z = 0$	$-0.053 < \Delta g_1^Z < 0.156$
$\lambda_Z = \Delta g_1^Z = 0$	$-0.376 < \Delta \kappa_Z < 0.686$
$\Delta \kappa_Z = 0 \text{ (HISZ)}$	$-0.075 < \lambda_Z < 0.093$
$\lambda_Z = 0 $ (HISZ)	$-0.027 < \Delta \kappa_Z < 0.080$

 $\Lambda = 2 \text{TeV}$

Set 95%CL limits in 2D and 1-D

- ZZ production at the Tevatron is now well established by both collaborations.
- Use both 41 and $11\nu\nu$ final state.
- DO: $\sigma(ZZ) = 1.60 \pm 0.63 \text{ (stat.)}^{+0.16}_{-0.17} \text{ (syst.) pb}$
- CDF: $\sigma_{ZZ} = 1.56^{+0.80}_{-0.63}(stat.) \pm 0.25(syst.)$ pb

Phys. Rev. Lett. 101, 171803 (2008),

CDF ZZ→4l update

- Require 4 leptons
- $p_T > 20, 15, 15, 15 \text{ GeV}$
- Require $|m_{ll} m_Z| < 15 \text{ GeV}$
- Require $m_{llll} < 300 \text{ GeV}$
- Find 4 candidates
- Tiny background (0.01 events.)
- Normalize to $Z \rightarrow ll$
- Measure:

 $\sigma(p\bar{p} \to ZZ) = (1.7 + 1.2 + 0.2(syst)) \text{ pb}$

$SM: 1.4 \pm 0.1 \ pb$

CDF: Jets + MET (WW+WZ+ZZ)

PRL 103 (2009) 091803

Acceptances: 2.5% (WW), 2.6% (WZ), 2.9% (ZZ)Expected σ (pb)11.7,3.6,1.5

- MET>60 GeV
- =2 hadronic jets, $E_T > 25$ GeV, $|\eta| < 2.0$
- $40 < m_{jj} < 160 \text{ GeV}$
- MET significance > 4
- $\Delta \phi(\text{MET-jet}) > 0.4 \text{ rad}$
- Use tracking-based MET to constrain QCD MJB model

Azimuthal angle between MET and nearest jet

 $\sigma(WW+WZ+ZZ) =$ 18.0 ± 2.8(stat) ± 2.4(syst) ± 1.1(lumi) pb,

cf $16.8 \pm 0.5 \text{ pb}$ expected 5.3 σ significance

CDF Ivjj (WW+WZ)

- Recent paper, PRL 104 (2010) 101801 with two separate techniques with little statistical overlap with each other or the jets+MET analysis (only ≈ 15%)
 - Di-jet mass fit (3.9 fb⁻¹)
 - Matrix-element technique with event-probability discriminant (2.7 fb⁻¹) (5.4 σ)
 - Combined result: $\sigma(WW+WZ) = 16.0\pm3.3 \text{ pb}$
 - SM expectation: 16.1 ± 0.9 pb.
- Recent updates of both
 - Di-jet mass fit (4.3 fb⁻¹) $18.1 \pm 3.3 \pm 2.5$ pb
 - ME (4.6 fb⁻¹) 16.5 +3.3 3.0 pb

CDF Ivjj (WW+WZ) Di-jet Mass

Require MET>25 GeV, di-jet $p_T > 40$ GeV. Leads to reasonably smoothly falling background in signal region – and visible bumps !

Sample	CEM	CMUP + CMX
MC W +jets	18010 ± 531	16673 ± 482
MC Z+jets	353 ± 42	966 ± 115
diboson	750 ± 68	651 ± 59
top	1324 ± 134	1149 ± 115
QCD (from data)	2314 ± 462	639 ± 159
Total $MC + QCD$	22751	20078
data	22204 ± 149	19738 ± 141

 $\sigma=23.5\pm4.9\pm3.2\ pb$

μ

CDF Ivjj (WW+WZ) ME Technique

- MET>40 GeV
- Exactly 2 jets, ET>25 GeV, $|\eta| < 2.0$
- Form EPD (basically a LR) from ME prob. for WW,WZ and W+jets, single top.

lvjj WW+WZ (D0)

 $\sigma(WW+WZ) (pb) =$ 20.2±2.5(stat)±3.6(sys)±1.2(lum)

PRL 102 (2009) 161801.

Use di-jet p_T to constrain TGCs PRD **80**, 053012 (2009)

D0 lvjj (WW+WZ) TGC constraints²⁴

$\Leftrightarrow SU(2) \times U(1)$ $\Leftrightarrow Equal couplings$

Λ=2TeV

PRD 80, 053012 (2009)

D0 Charged TGC combination

Combine 1fb⁻¹ results from Wγ, WW, WZ, WW+WZ. Recent WZ analysis not included.

 $\Lambda = 2 \text{TeV}$

$$\mu_W = \frac{e}{2M_W} (g_1^{\gamma} + \kappa_{\gamma} + \lambda_{\gamma})$$
$$q_W = -\frac{e}{M_W^2} (\kappa_{\gamma} - \lambda_{\gamma})$$

Outlook & Summary

- With 8 fb⁻¹ per experiment and prospects for doubling the integrated luminosity, diboson physics is very much alive and well at the Tevatron.
 - Current data-sets, once fully analyzed and exploited, promise a wealth of information on interactions at mass scales in the few-100 GeV range.
 - So far all expected di-boson processes have been observed and measurements are in accord with theoretical predictions – but often with relatively large statistical errors – so still room for surprises.
- Increased statistics, and maturing analysis techniques are leading to measurements in challenging channels.
 - Channels like WW, trileptons, jets+MET and lvjj, test electroweak interactions, provide benchmark channels relevant to the Higgs quest, and also lend themselves to Higgs searches themselves.
- In a few years, the LHC hopefully will have many more collisions to sift through and at a higher energy. For now, p-pbar at 1.96 TeV at L up to 4 ×10³² may not be that novel – but it sure continues to be fun – and scientifically compelling!

Backup Slides

Tevatron Luminosity

Integrated Luminosity History

Detectors

D \varnothing : calorimetry and μ coverage

- 2T Solenoid
- tracker to R = 52 cm
- RunIIb: Layer 0 Silicon. Upgrades to trigger
- CDF: general purpose
- 1.4T Solenoid
- High precision tracker (R = 1.4m) Both detectors have Si VTX detectors optimized for b-tagging Tevatron: 1.7 MHz BX frequency $\langle n_{int} \rangle$ on average ≈ 4 (store start ≈ 10)

Hadron Collider Physics

Physics program depends a lot on being able to reconstruct jets reliably and requiring leptons to reduce QCD bkgds. Control lepton-id and trigger efficiencies using $Z \rightarrow 11$ samples.

All measured cross-sections typically have 6% normalization uncertainty γy

• See slides from M. Martinez talk yesterday.

• Previous CDF result

Candidate	leptons	M_{ll-1}	M_{ll-2}	4 lepton invariant mass
1	$trk\mu/\mu\mu$	$90.5 \ \mathrm{GeV/c^2}$	$88.5 \ \mathrm{GeV/c^2}$	324.8 GeV/c^2
2	$trk\mu/\mu\mu$	$91.6 \ \mathrm{GeV/c^2}$	94.2 GeV/c^2	$169.4 \ \mathrm{GeV/c^2}$
3	$ee/\mu\mu$	93.0 GeV/c^2	86.4 GeV/c^2	$191.9 \ {\rm GeV/c^2}$
4	$ee/\mu\mu$	93.3 GeV/c^2	79.7 GeV/c^2	$229.2 \ {\rm GeV/c^2}$
5	$\mu\mu/\mu\mu$	$91.7 \ \mathrm{GeV/c^2}$	$55.1 \ \mathrm{GeV/c^2}$	325.0 GeV/c^2

- Yielded 5 candidates consistent with SM expectation
- ZZ resonance search in m₁₁₁₁ > 300 GeV region in progress.

