Precisely Exploring Higgs-Scale Physics with the ILC

First observations of a new particle in the search for the Standard Model Higgs boson at the LHC

Graham W. Wilson University of Kansas

$\sqrt{s=250 \text{ GeV}, e^+e^-} \rightarrow \mu^+ \mu^- \text{H}}$

Plan

- 1. Brief Particle Physics Initiation
- 2. What is the proposed ILC accelerator ?
- 3. What is the proposed ILD detector concept ?
- 4. Particle Physics: Particles, Higgs, Interactions

- 5. Brief ILC Physics Overview
- 6. Experimental Methods which Broaden the ILC Science Scope

Particle Physics

Elementary Particle Physics seeks to understand the fundamental building blocks of matter and their interactions.

The point-like particles (leptons, quarks) and the particles that mediate their interactions.

A bit like a board game – find all the pieces and figure out the rules of the game.

Standard Model Particle Content

The Fermions

- Quarks and Charged Leptons behave like Dirac Fermions
 - Particles with 2 spin states
 - Anti-Particles with 2 spin states
- In practice, there are 4 kinds of electron.

 The ILC is an accelerator where one can experiment with all 4 varieties (longitudinally polarized electrons and longitudinally polarized electron antiparticles: positrons)

What is the International Linear Collider (ILC) ?

YouTube Video

ILC Baseline Parameters

Centre-of-mass energy	E_{CM}	GeV	200	230	250	350	500
Luminosity pulse repetition rate		Hz	5	5	5	5	5
Positron production mode			10 Hz	10 Hz	10 Hz	nom.	nom.
Estimated AC power	P_{AC}	MW	114	119	122	121	163
Bunch population	N	$\times 10^{10}$	2	2	2	2	2
Number of bunches	n_b		1312	1312	1312	1312	1312
Linac bunch interval	Δt_b	ns	554	554	554	554	554
RMS bunch length	σ_z	μm	300	300	300	300	300
Normalized horizontal emittance at IP	$\gamma \epsilon_x$	μm	10	10	10	10	10
Normalized vertical emittance at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35
Horizontal beta function at IP	eta_x^*	mm	16	14	13	16	11
Vertical beta function at IP	β_{u}^{*}	mm	0.34	0.38	0.41	0.34	0.48
RMS horizontal beam size at IP	σ_x^*	nm	904	789	729	684	474
RMS vertical beam size at IP	σ_{y}^{*}	nm	7.8	7.7	7.7	5.9	5.9
Vertical disruption parameter	D_y		24.3	24.5	24.5	24.3	24.6
Fractional RMS energy loss to beamstrahlung	δ_{BS}	%	0.65	0.83	0.97	1.9	4.5
Luminosity	L	$ imes 10^{34}~{ m cm^{-2}~s^{-1}}$	0.56	0.67	0.75	1.0	1.8
Fraction of L in top 1% E_{CM}	$L_{0.01}$	%	91	89	87	77	58
Electron polarisation	P_{-}	%	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30
Electron relative energy spread at IP	$\Delta p/p$	%	0.20	0.19	0.19	0.16	0.13
Positron relative energy spread at IP	$\Delta p/p$	%	0.19	0.17	0.15	0.10	0.07

25-years of Development

THE INTERNATIONAL LINEAR COLLIDER

TECHNICAL DESIGN REPORT | VOLUME 1: EXECUTIVE SUMMARY

The International Linear Collider – A Worldwide Event From Design to Reality

12 June 2013 Tokyo, Geneva, Chicago

www.linearcollider.org/worldwideevent

Enabling Technology Now Ready

Superconducting RF accelerating cavities. 5 MV/m \rightarrow 37 MV/m

ilc

Production yield: 94 % at > 28 MV/m,

Average gradient: 37.1 MV/m

reached in 2012

Also starting to be used on a large scale in light sources.

ILC Accelerator

20

Nan Phinney, 6/12/13

ILC Where ?

Candidate sites in Chicago, Geneva, Russia, Japan.

Japan is currently seen as most likely. 10

(Chicago was a fair bet 7 years ago)

- Japanese Mountainous Sites -

KYUSHU district

TOHOKU district

What is ILD ?

International Large Detector

A modern detector designed for ILC. Similar size to CMS. I have been involved in the big picture design of this since 1995. ILC: higher energy (x 5), higher luminosity (x 500), much better detector.

Detector Design Philosophy

Designed based on the **particle-flow** approach to complete reconstruction of the event.

Major emphasis on granularity so that individual particles are separated and unambiguously reconstructed.

Requires hardware and software in the design process.

Detectors

Often, hadronic interactions do start in the electromagnetic calorimeter

Particle-Flow in a Nut-Shell

E(jet) = E(charged) + E(photons) + E(neutral hadrons)

- Outsource 65% of the event-energy measurement responsibility from the calorimeter to the tracker
 - Emphasize particle separability (large R) and tracking
 - Leading to better jet energy precision
- Reduce importance of hadronic leakage
 - Now only 10% instead of 75% of the average jet energy is susceptible
 - Detector designs suited to wide energy range
- Maximize event information
 - Aim for full reconstruction of each particle including V⁰s, kinks, π⁰ etc.
 - Understand energy response and resolution event-by-event.

Particle AVERAGEs

ILD Detector Sub-systems

Barrel Detector Parameters

Barrel sy	Barrel system						
System	R(in)	R(out) [mm]	Z	comments			
VTX	16	60	125	3 double layers	Silicon pixel sensors,		
				layer 1:	layer 2:	layer 3-6	
				$\sigma < 3\mu m$	$\sigma < 6 \mu m$	$\sigma < 4\mu m$	
Silicon							
- SIT	153	300	644	2 silicon strip layers	$\sigma=7\mu m$		
- SET	1811		2300	2 silicon strip layers	$\sigma=7\mu m$		
- TPC	330	1808	2350	MPGD readout	$1 \times 6 \mathrm{mm}^2 \mathrm{ pads}$	$\sigma~=~60 \mu m$ at zero drift	
ECAL	1843	2028	2350	W absorber	Siecal ←	30 Silicon sensor layers, $5 \times 5 \text{ mm}^2$ cells	
					ScECAL	30 Scintillator layers, $5 \times 45 \text{ mm}^2$ strips	
HCAL	2058	3410	2350	Fe absorber	AHCAL	48 Scintillator lay- ers, 3×3 cm ² cells, analogue	
					SDHCAL	48 Gas RPC layers, $1 \times 1 \text{ cm}^2$ cells, semi-digital	
Coil	3440	4400	3950	3.5 T field	2λ		
Muon	4450	7755	2800	14 scintillator layers			

Particle Flow Performance

Event-Specific Resolution

Vertex Detector

Several different technologies: pixel sensors, readout scheme, material budget. CMOS, FPCCD, DEPFET. Pairs background => Inner radius ~ $1/\sqrt{B}$

Baseline geometry: 3 double-layers.

	$R \ (mm)$	z (mm)	$ \cos \theta $	σ (μ m)	Readout time (μ s)
Layer 1	16	62.5	0.97	2.8	50
Layer 2	18	62.5	0.96	6	10
Layer 3	37	125	0.96	4	100
Layer 4	39	125	0.95	4	100
Layer 5	58	125	0.91	4	100
Layer 6	60	125	0.9	4	100

CMOS and FPCCD solutions meet the design requirement of $\sigma_b=5 \oplus 10/(p \beta \sin^{3/2}\theta) \mu m$

Main Tracker: Time Projection Chamber

Supplemented by stand-alone VTX tracking, SIT + Forward tracking disks.

SET and ETD provide precise external space-point.

3 10⁹ volume pixels. 224 points per track. Single-point resolution 50 - 100 μ m r- ϕ , 400 μ m r-z [cos θ] < 0.985 (TPC) [cos θ] < 0.996 (FTD)

Readout options: GEM, Micromegas. Alternative: Si Pixel

SIT and FTD are essential elements of an integrated design.

Tracking System

Complete TPC coverage to 37° VTX + SIT + FTD + SET + ETD => precision, redundancy and coverage to $|\cos\theta| = 0.996$.

Momentum Resolution

Matches well requirements from Higgs recoil measurement.

CALICE Collaboration

281 members, 12 countries, 47 institutes (including Argonne, Boston, Iowa, Kansas, NIU)

Framework for integrated testing of calorimeter technologies suited to a Particle-Flow collider detector

Major test-beam runs: CERN 06, 07, Fermilab 08, 09.

Si-W Analog Tail-catcher / ECAL HCAL muon tracker

Calorimetry Technologies

All are studied by the CALICE collaboration

- ECAL (23 X_0 : 20 x 0.6 X_0 + 9 x 1.2 X_0)
 - Silicon-W
 - transverse cell-size 5mm X 5mm
 - Scintillator-W with MPPC readout
 - 5mm X 45 mm X 2mm strips
 - (Digital: MAPS)
- HCAL
 - Analog : Scintillator + Stainless Steel.
 - Tiles with Si-PM readout
 - 3mm Sc, 3cm X 3cm.
 - Digital/Semi-Digital : Gas + Stainless Steel.
 - Glass RPCs or MPGDs, 1cm X 1cm

CALICE Results from Physics Prototypes

Strong support for predicted Particle Flow performance from first-ready technologies.

Standard Model Particle Content²⁶

Electro-weak Symmetry Breaking

- Gauge theories are formulated with massless particles in particular massless W and Z.
- But need massive W and Z while keeping the photon massless.
- Hypothesize a complex scalar doublet field. (4 degrees of freedom).
- 3 are used to give mass to the W^+ , W^- and Z.
- 1 remnant dof is the scalar particle of the SM commonly called the SM Higgs boson

Higgs Concepts

Anderson, Brout, Englert, Higgs, Guralnik, Hagen, Kibble, Weinberg... 1960's ...

- Higgs Mechanism
 - The spontaneous symmetry breaking mechanism in which the W and Z become massive
- Higgs Particle
 - The most obvious initially testable consequence
- Higgs Field
 - A new universal scalar field thought to be present throughout the universe posited to endow all elementary particles with their mass

Higgs Puzzle

"Energy frontier" main themes are:

- 1. Measure properties of the Higgs boson
- 2. Measure properties of the t, W and Z
- 3. Direct search for new particles
- All will be advanced by the LHC.
- Particularly 1, 2 will be advanced much further with ILC

 $SU(3)_C \ge SU(2)_L \ge U(1)_Y$

- The fermions interact via gauge bosons.
- The allowed vertices encapsulate the essence of the physics.
- Feynman diagrams for allowed process can be constructed from the allowed vertices.
- Can calculate interaction rates etc
- Example $e^+e^- \rightarrow e^+ W^- \nu_e$

$SU(3)_C \ge SU(2)_L \ge U(1)_Y$

Charged fermions couple to photons: Quantum Electrodynamics (QED). Not just for the electron, but for $f = e, \mu, \tau, u, d, c, s, b, t$, with coupling proportional to Q_f

$SU(3)_C \ge SU(2)_L \ge U(1)_Y$

Quarks couple to gluons: Quantum Chromo-Dynamics (QCD). For q = u, d, c, s, b, t

 $SU(3)_C \ge SU(2)_L \ge U(1)_Y$

Fermions couple to the charged W bosons (Electro-weak). The weak nuclear force as in β -decay.

 $SU(3)_C \ge SU(2)_L \ge U(1)_Y$

Fermions couple to Z bosons (Electro-weak). "Heavy-photon". The allowed ffZ vertices include the same ones as for ff γ , but with the addition of vvZ.

Higgs Interactions

Couplings depend on mass of the particle. Higgs also couples to itself with a coupling depending on its mass.

Beyond the Standard Model ?

Quantum corrections to the Higgs mass likely drive it close to the Planck mass (10^{19} GeV). To naturally explain a 126 GeV Higgs – need some new physics at or below the TeV scale to cancel these divergent corrections.

The leading framework is supersymmetry (SUSY) which posits a whole new set of particles including a particle physics candidate for dark matter.

 Higgs exists
 But no evidence so far for sparticles.

SM Higgs Production and Decay

Best options at LHC are gluon-gluon fusion production of H (can reconstruct the mass) i) $H \rightarrow \gamma \gamma$ (0.2%) ii) $H \rightarrow Z Z^* \rightarrow 4$ leptons (0.013% !) (Many more obvious channels are not experimentally viable)

SM Higgs Production at ILC

Sensitive to all production and decay modes including hadronic decays of Z and H

Higgs Measurements

At ILC : (6% of Z decays)

Higgs mass measured from dilepton recoil mass :

Linear collider can find Higgs events no matter how the Higgs decays. **Even invisibly**!

Can measure ZH cross-section directly

$$M_X^2 = \left(p_{CM} - (p_{\mu^+} + p_{\mu^-})\right)^2$$

Branching ratio measurements follow: does Higgs couple to mass ?

This Event Again

Spot the muons ?

Recoil – mass.

Higgs Measurement Prospects

couplings

Mode	LHC	ILC(250)	ILC500	ILC(1000)
WW	4.1 %	1.9 %	0.24 %	0.17 %
ZZ	4.5 %	0.44 %	0.30 %	0.27 %
$b\overline{b}$	13.6 %	2.7 %	0.94 %	0.69 %
gg	8.9 %	4.0 %	2.0 %	1.4 %
$\gamma\gamma$	7.8 %	4.9 %	4.3 %	3.3 %
$\tau^+\tau^-$	11.4 %	3.3 %	1.9 %	1.4 %
$c\overline{c}$	_	4.7 %	2.5 %	2.1 %
$t\overline{t}$	15.6 %	14.2 %	9.3 %	3.7 %
$\mu^+\mu^-$	_	_	_	16 %
self	_	_	104%	26 %
BR(invis.)	< 9%	< 0.44 %	< 0.30 %	< 0.26 %
$\Gamma_T(h)$	20.3%	4.8 %	1.6 %	1.2 %

ILC quantitatively and qualitatively can probe Higgs couplings at the few % level where deviations from the SM may be expected.

Is that precision and uniqueness really useful ?

The phenomenological MSSM (pMSSM) has 19 parameters.

Cahill-Rowley et al, 1308.0297

Channel	$300 {\rm ~fb^{-1}} {\rm ~LHC}$	$3 \text{ ab}^{-1} \text{ LHC}$	$500 { m GeV ILC}$	HL 500 GeV ILC
$b\bar{b}$	16.5%	32.4%	77.5%	90.6%
$\tau \tau$	0.7%	3.1%	11.5%	36.8%
<u>gg</u>	0.06%	0.6%	99.1%	100.0%
$\gamma\gamma$	0.04%	0.05%	0.04%	0.2%
Invisible			0.03%	0.04%
All	17.0%	34.0%	99.7%	100.0%

Table 4: The fraction of neutralino LSP models with the correct Higgs mass surviving the current 7 and 8 TeV LHC searches that are expected to be excluded by future Higgs coupling measurements, *assuming* that the SM values for these couplings are obtained. Blank entries indicate values below 0.01%.

Lessons: 1. H to b bbar important channel at LHC

2. ILC Higgs measurements can exclude ALL SUSY model points. (prior has masses below 4 TeV)

Precision Electroweak - 2011

Data have been indicating a light Higgs for quite some time.

Precision Measurements

Testing Nature at ILC. Can measure mW, mt, mH, ALR. mZ? with unprecedented precision.

Experimental reach depends on ability to control systematics such as those associated with the beam energy measurement and detector energy scales. I've been working on these aspects.

arXiv: 1307.3962 Exploring Quantum Physics at the ILC (White Paper for the HEP decadal survey)
 A. FREITAS^{1*}, K. HAGIWARA^{2†}, S. HEINEMEYER^{3‡}, P. LANGACKER^{4,5§}, K. MOENIG^{6¶}, M. TANABASHI^{7,8} AND G.W. WILSON^{9**}

Pi0 Fitting

We can fit, minimizing the χ^2 between the measurement vector (\mathbf{x}_{M}) and the fit vector (\mathbf{x}) subject to the mass constraint.

GWW and Brian van Doren

$$\pi^0 \rightarrow \gamma_1 \gamma_2 \ (98.8\%)$$

$$m^2 = 2E_1 E_2 (1 - \cos \psi_{12})$$

We know m=134.9766 \pm 0.0006 MeV

$$\chi^{2}(\mathbf{x}) = f(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_{M})^{T} \mathbf{V}_{M}^{-1} (\mathbf{x} - \mathbf{x}_{M})$$

Variable	Measured	3-variable fit	6-variable fit	Pull
E_1	2.468 ± 0.253	2.385 ± 0.192	2.385 ± 0.192	-0.504
E_2	1.679 ± 0.196	1.605 ± 0.130	1.605 ± 0.130	-0.504
$2(1-\cos\psi_{12})$	$(4.765 \pm 0.0985) \times 10^{-3}$	$(4.759 \pm 0.0977) \times 10^{-3}$		-0.504
θ_1 (mrad)	1608.36 ± 0.50		1608.37 ± 0.50	0.504
θ_2 (mrad)	1619.11 ± 0.50		1619.10 ± 0.50	-0.504
ϕ_1 (mrad)	2196.86 ± 0.50		2196.84 ± 0.50	-0.504
ϕ_2 (mrad)	2128.60 ± 0.50		2128.62 ± 0.50	0.504
m_{π^0} (MeV)	140.5			
$ ho_{E_1E_2}$		-0.968 3	-0.9683	
E_{π^0}	4.147 ± 0.320	3.990 ± 0.074	3.990 ± 0.074	
χ^2/ν		0.2543/1		
p_{fit} (%)		61.4		

Can greatly improve E measurement error

Applying to Physics ($H \rightarrow hadrons$)

Using event-to-event error knowledge

46

ILC W Mass Measurement Strategies

• W+W-

- 1. Threshold Scan ($\sigma \sim \beta/s$)
 - Can use all WW decay modes
- 2. Kinematic Reconstruction (qq e nu and qq mu nu)
 - Apply kinematic constraints
- W e v (+ WW) proposed by me same issues as vvH discussed above
 - 3. Directly measure the hadronic mass in W → q q' decays.
 - Can use WW -> q q tau nu too

Methods 1 and 2 were used at LEP2. Both require good knowledge of the absolute beam energy.

Method 3 is novel (and challenging), very complementary systematics to 1 and 2 if the experimental challenges can be met.

Polarized Threshold Scan (GWW)

Use (-+) helicity combination of e- and e+ to enhance WW.

Use (+-) helicity to suppress WW and measure background.

Use (--) and (++) to control polarization (also use 150 pb qq events)

Experimentally very robust. Fit for eff, pol, bkg, lumi

"New" In-Situ Beam Energy Method

GWW

 $e+e- \rightarrow \mu^+\mu^-(\gamma)$

Use muon momenta. Measure $E_1 + E_2 + |p_{12}|$ as an estimator of \sqrt{s}

161 GeV, Luminosity = 8.2 fb⁻¹ GWW with J. Sekaric Events / (0.0002 4000 mean = 0.999766 ± 0.000013 3500 3000 2500 2000 1500 1000 500 KK MC,e'e⁺ (LR) function (CE 0 95 0.96 0.99 1.01 0.97 0.98 1 s_p / s_{nom}

ILC detector momentum resolution (0.15%), gives beam energy to better than 5 ppm statistical. Momentum scale to 10 ppm => 0.8 MeV beam energy error projected on mW. (J/psi)

Beam Energy Uncertainty should be controlled for $\sqrt{s} \le 500$ GeV

Can control momentum scale using measured di-lepton mass

This is about 100 fb⁻¹ at ECM=350 GeV.

Statistical sensitivity if one turns this into a Z mass measurement (if pscale is determined by other means) is

1.8 MeV / √N

With N in millions.

Alignment ? B-field ? Push-pull ? Etc ... Note Z mass only known to 23 ppm

Momentum Scale with J/psi

With 10⁹ Z's expect statistical error on mass scale of < 3.4 ppm given ILD momentum resolution.

Most of the J/psi's are from B decays.

J/psi mass is known to 3.6 ppm.

Can envisage also improving on the measurement of the Z mass (23 ppm error)

Double-Gaussian + Linear Fit

W Mass Measurements

GWW

- 1. Polarized Threshold Scan
- 2. Kinematic Reconstruction
- 3. Hadronic Mass

Method 1: Statistics limited.

Method 2: With up to 1000 the LEP statistics and much better detectors. Can target factor of 10 reduction in systematics.

Method 3: Depends on di-jet mass scale. Plenty Z's for 3 MeV.

()					
(2)	ΔM_W [MeV]	LEP2	ILC	ILC	ILC
	\sqrt{s} [GeV]	172-209	250	350	500
	$\mathcal{L} [\text{fb}^{-1}]$	3.0	500	350	1000
	$P(e^{-})$ [%]	0	80	80	80
	$P(e^{+})$ [%]	0	30	30	30
	beam energy	9	0.8	1.1	1.6
	luminosity spectrum	N/A	1.0	1.4	2.0
	hadronization	13	1.3	1.3	1.3
	radiative corrections	8	1.2	1.5	1.8
	detector effects	10	1.0	1.0	1.0
	other systematics	3	0.3	0.3	0.3
	total systematics	21	2.4	2.9	3.5
	statistical	30	1.5	2.1	1.8
	total	36	2.8	3.6	3.9

1	ΔM_W [MeV]	LEP2	ILC	ILC
	\sqrt{s} [GeV]	161	161	161
	\mathcal{L} [fb ⁻¹]	0.040	100	480
	$P(e^{-})$ [%]	0	90	90
	$P(e^{+})$ [%]	0	60	60
	statistics	200	2.4	1.1
	background		2.0	0.9
	efficiency		1.2	0.9
	luminosity		1.8	1.2
	polarization		0.9	0.4
	systematics	70	3.0	1.6
	experimental total	210	3.9	1.9
	beam energy	13	0.8	0.8
	theory	-	(1.0)	(1.0)
	total	210	4.1	2.3

`` \		-	_		-
3)	ΔM_W [MeV]	ILC	ILC	ILC	\mathbf{ILC}
	\sqrt{s} [GeV]	250	350	500	1000
	\mathcal{L} [fb ⁻¹]	500	350	1000	2000
	$P(e^{-})$ [%]	80	80	80	80
	$P(e^{+})$ [%]	30	30	30	30
	jet energy scale	3.0	3.0	3.0	3.0
	hadronization	1.5	1.5	1.5	1.5
	pileup	0.5	0.7	1.0	2.0
	total systematics	3.4	3.4	3.5	3.9
	statistical	1.5	1.5	1.0	0.5
	total	3.7	3.7	3.6	3.9

New Beam Polarization Measurement Method (GWW)

Use final states with photon or muon(s) with missing energy

Collect data with all 4 pairings. (-+) (+-) (--) (++)Count events in each of the 4 channels. 7-parameter fit with 16 measurements

2 ab^{-1} distributed 40:40:10:10 amongst polarisation configurations 1-4.

$$\begin{array}{ll} \sqrt{s=3TeV \; study} & \begin{array}{c} |P_{e^-}| & 80.000 \pm 0.064\% \\ |P_{e^+}| & 30.000 \pm 0.085\% \\ \sigma_{LR}^{\gamma} & 3098.0 \pm 3.0 \; {\rm fb} \\ \sigma_{RL}^{\gamma} & 25.3 \pm 1.0 \; {\rm fb} \\ \sigma_{LR}^{Z} & 159.40 \pm 0.53 \; {\rm fb} \\ \sigma_{LR}^{\mu} & 580.9 \pm 1.0 \; {\rm fb} \\ \sigma_{SS}^{\mu} & 657.4 \pm 1.3 \; {\rm fb} \end{array}$$

Beam polarisation correlation:

 $ho(|P_{
m e^-}|, |P_{
m e^+}|) = 10\%$

Would mW to 2 MeV be interesting ?

Can test whether W and top masses are consistent with the SM Higgs mass or MSSM with either the 126 GeV object being the light (left plot) or heavy (right plot) CP even Higgs

Conclusions

- Driving theme for the field is to follow up on the Higgs discovery.
- The ILC accelerator is the machine we know we can build today that can explore much further.
- There is much to do at the "Higgs-scale"
 - Important to plan the best experimental strategies for precision measurements.
 - Personal contributions to several areas impacting on the scientific scope.